Relative Periodic Solutions of the Complex Ginzburg-Landau Equation

نویسندگان

  • Vanessa López
  • Philip Boyland
  • Michael T. Heath
  • Robert D. Moser
چکیده

A method of finding relative periodic orbits for differential equations with continuous symmetries is described and its utility demonstrated by computing relative periodic solutions for the one-dimensional complex Ginzburg-Landau equation (CGLE) with periodic boundary conditions. A relative periodic solution is a solution that is periodic in time, up to a transformation by an element of the equation’s symmetry group. With the method used, relative periodic solutions are represented by a spacetime Fourier series modified to include the symmetry group element and are sought as solutions to a system of nonlinear algebraic equations for the Fourier coefficients, group element, and time period. The 77 relative periodic solutions found for the CGLE exhibit a wide variety of temporal dynamics, with the sum of their positive Lyapunov exponents varying from 5.19 to 60.35 and their unstable dimensions from 3 to 8. Preliminary work indicates that weighted averages over the collection of relative periodic solutions accurately approximate the value of several functionals on typical trajectories.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some new exact traveling wave solutions one dimensional modified complex Ginzburg- Landau equation

‎In this paper‎, ‎we obtain exact solutions involving parameters of some nonlinear PDEs in mathmatical physics; namely the one-‎dimensional modified complex Ginzburg-Landau equation by using the $ (G'/G) $ expansion method‎, homogeneous balance method, extended F-expansion method‎. ‎By ‎using homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by j...

متن کامل

Exact solutions of the 2D Ginzburg-Landau equation by the first integral method

The first integral method is an efficient method for obtaining exact solutions of some nonlinear partial differential equations. This method can be applied to non integrable equations as well as to integrable ones. In this paper, the first integral method is used to construct exact solutions of the 2D Ginzburg-Landau equation.

متن کامل

Exact localized and periodic solutions of the discrete complex Ginzburg–Landau equation

We study, analytically, the discrete complex cubic Ginzburg–Landau (dCCGL) equation. We derive the energy balance equation for the dCCGL and consider various limiting cases. We have found a set of exact solutions which includes as particular cases periodic solutions in terms of elliptic Jacobi functions, bright and dark soliton solutions, and constant magnitude solutions with phase shifts. We h...

متن کامل

Relative Periodic Solutions of the Cgle

A method of finding relative periodic orbits for differential equations with continuous symmetries is described and its utility demonstrated by computing relative periodic solutions for the one-dimensional complex Ginzburg-Landau equation (CGLE) with periodic boundary conditions. A relative periodic solution is a solution that is periodic in time, up to a transformation by an element of the equ...

متن کامل

Bifurcating Vortex Solutions of the Complex Ginzburg-landau Equation

It is shown that the complex Ginzburg-Landau (CGL) equation on the real line admits nontrivial 2-periodic vortex solutions that have 2n simple zeros (\vortices") per period. The vortex solutions bifurcate from the trivial solution and inherit their zeros from the solution of the linearized equation. This result rules out the possibility that the vortices are determining nodes for vortex solutio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Applied Dynamical Systems

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2005